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1. (a) Sketch the graph of  y = x – 2a, given that a > 0. 

(2) 

 (b) Solve x – 2a > 2x + a, where a > 0. 

(3) 

      

 

2. Given that 3 + i is a root of the equation f(x) = 0, where 

 

f(x) = 2x
3
 + ax

2
 + bx – 10,       a, b  ℝ, 

 

 (a) find the other two roots of the equation f(x) = 0, 

(4) 

 (b) find the value of a and the value of b. 

(3) 

  

 

3. Find the general solution of the differential equation 

 

x

y

d

d
 + 2y cot 2x = sin x,       0 < x < 

2


, 

 

 giving your answer in the form y = f(x). 

(7) 
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4.           Figure 1 

 

 

 Figure 1 shows part of the graph of y = f(x), where  

 

f(x) = x sin x + 2x – 3. 

 

 The equation f(x) = 0 has a single root . 

 

 (a) Taking x1 = 1 as a first approximation to , apply the Newton-Raphson procedure once 

to f(x) to find a second approximation to , to 3 significant figures. 

(5)    

 (b) Given instead that x1 = 5 is taken as a first approximation to  in the Newton-Raphson 

procedure, 

 

  (i) use Figure 1 to produce a rough sketch of y = f(x) for 3  x  6, 

 

  and by drawing suitable tangents, and without further calculation, 

 

  (ii) show the approximate positions of x2 and x3, the second and third approximations 

to . 

(2) 

 



5. (a) Express 
)2(

1

rr
 in partial fractions. 

(2) 

 (b) Hence prove, by the method of differences, that 

 


 

n

r rr1 )2(

4
 = 

)2)(1(

)53(



nn

nn
. 

 (5) 

 (c) Find the value of 
 

100

50 )2(

4

r rr
, to 4 decimal places. 

(3) 

 

 

6. (a) Show that the transformation y = xv transforms the equation 

 

     x
2

2

2

d

d

x

y
– 2x

x

y

d

d
 + (2 + 9x

2
)y = x

5
,  I 

 into the equation 

      
2

2

d

d

x

v
 + 9v = x

2
.   II 

 (5) 

 (b) Solve the differential equation II to find v as a function of x. 

(6) 

(c) Hence state the general solution of the differential equation I. 

(1) 

 

 

7. The curve C has polar equation r = 6 cos  ,  –
2


   < 

2


, 

 and the line D has polar equation r = 3 sec 





 

3
, –

6


   < 

6

5
. 

 

 (a) Find a cartesian equation of C and a cartesian equation of D. 

(5) 

 (b) Sketch on the same diagram the graphs of C and D, indicating where each cuts the 

initial line. 

(3) 

 

 The graphs of C and D intersect at the points P and Q. 

 

 (c) Find the polar coordinates of P and Q.  

(5) 

 

 

N17583A 4 



 

N17583A 5  

8. Given that z = 4 





 

4

3
sini

4

3
cos


 and w = 1 – i3, find 

 

 (a) 
w

z
, 

(3) 

 (b) arg 







, in radians as a multiple of .  
w

z

(3) 

 (c) On an Argand diagram, plot points A, B, C and D representing the complex numbers z, w, 









w

z
 and 4, respectively. 

(3) 

 (d) Show that  AOC =  DOB. 

(2) 

 (e) Find the area of triangle AOC. 

(2) 
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